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Abstract. Multiparametric quantum deformations @f(2) are studied through a complete
classification ofgl/(2) Lie bialgebra structures. From these, the non-relativistic limit leading to
harmonic oscillator Lie bialgebras is implemented by means of a contraction procedure. New
quantum deformations @fl (2), together with their associated quant&@ymatrices, are obtained,

and other known quantizations are recovered and classified. Several connections with integrable
models are outlined.

1. Introduction

A two-parametric quantum deformation gf(2) has been proved in [1] to provide the
quantum group symmetry of the sp&wXXZ Heisenberg chain with twisted periodic boundary
conditions [2, 3]. Inthis context, the central generdtof the gl (2) algebra plays an essential

role inthe algebraic introduction of the twisted boundary terms of the spin Hamiltonian through

a deformation induced from the exponential of the classigahtrixr = J3 A I. This seems

not to be an isolated example, since the general construction introduced in [4] establishes a
correspondence between models with twisted boundary conditions (see references therein)
and multiparametric Reshetikhin twists [5] in which the Cartan subalgebra is enlarged with a
(cohomologically trivial) central generator.

From another different physical point of vieg/,(2) can be also considered as the natural
relativistic analogue of the one-dimensional harmonic oscillator algebra [6]. The latter (which
is a non-trivial central extension of thed + 1) Poincaé algebra) can be obtained from
gl(2) (which is a trivial central extension of/(2, R) = so(2, 1)) through a generalized
Indni—Wigner contraction, that can be interpreted as the algebraic transcription of the non-
relativistic limit connecting both kinematics. The direct applicability of quantum algebras in
the construction of completely integrable many-body systems through the formalism given
in [7] (that precludes the use of any transfer matrix technique by making use directly of the
Hopf algebra axioms) suggests that a systematic study of quagiti@nalgebras would be
related to the definition of integrable systems consisting in long-range interacting relativistic
oscillators (see [8] for the construction of non-relativistic oscillator chains). Finally, note also
that ag/(2) induced deformation of the Sddinger algebra has been recently used to construct
a discretized version of thd + 1) Schibdinger equation on a uniform time lattice [9].

Up to now, much attention has been paid to quantuixi2) groups and their classifications
[10-16], but a fully general and explicit description of quantgit?) algebras is still lacking,
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although partial results can be already found in the literature [17-24]. Such a systematic
approach to quanturgl/(2) algebras is the aim of the present paper, and the underlying
Lie bialgebra structures and classieamatrices will be shown to contain all the essential
information characterizing different quantizations. In sectiogi ) Lie bialgebras are fully
obtained and classified into two multiparametric and inequivalent families. Their contraction to
the harmonic oscillator Lie bialgebras is performed in section 3 by introducing a multiparameter
generalization of the Lie bialgebra contraction theory [25] that allows us to perform the
non-relativistic limit. Among the quantum deformations of the harmonic oscillator algebra
whose Lie bialgebras are obtained, we find the one introduced in [26] in the context of link
invariants. Finally, an extensive study of the quantizationgl/@2) Lie bialgebras is given

in section 4. New quantum algebras, deformed Casimir operators and quAntuatrices

are obtained and known results scattered through the literature are easily derived from the
classification presented here. In particular, the quantum algebra corresponding to the quantum
groupGL; ,(2) [16] is constructed (recall that this is a natural superposition of both standard
and non-standard deformations). Quantum symmetry algebras of the tWistEdnd X X X

models are identified, and it is shown how new quangii2) invariant spin chains can be
systematically obtained from the new multiparametric deformations that have been introduced.

2. Thegl(2) Lie bialgebras

AlLiebialgebra(g, §) isaLie algebrg endowed withamap: ¢ — g®g (the cocommutator)
that fulfils two conditions: (ip is a 1-cocycle, i.e.

SIX, YD =[6(X), 1@Y+YR1]+[1® X +X ®1, §(Y)] VX,Y €g. (2.1)
(i) The dual maps* : g* ® g* — g* is a Lie bracket org*.

A Lie bialgebra(g, 8) is called a coboundary Lie bialgebra if there exists an element
r € g A g (the classicat-matrix), such that

X)=[1lX+X®1,r] VX eg. (2.2)

When ther-matrix is a skewsymmetric solution of the classical Yang—Baxter equation (YBE)
we shall say thag, 5(r)) is anon-standardor triangular) Lie bialgebra, while when it is a
skewsymmetric solution of the modified classical YBE we shall hastaadardone. On the
other hand, two Lie bialgebrag, §) and (g, 8") are said to be equivalent if there exists an
automorphismO of g such that’ = (0 ® 0) 080 O~ L.

Let us now consider thgl(2) Lie algebra

[Ja, Ji] = 274 [J3, J_] = —2J_ [, J.] = J3 [1,-]=0. (2.3)

Notice thatg/ (2) = s1(2, R)®u(1) wherel is the central generator. The second-order Casimir
is

C=J;+21J_+2] .. (2.4)

The most general cocommutator g/(2) — gl(2) ® gl(2) will be a linear combination (with
real coefficients)

5(X) = fFX; A Xy (2.5)

of skewsymmetric products of the generatdis of g/(2). Such a completely general
cocommutator has to be computed by firstly imposing the cocycle condition. This leads
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to the following six-paramet€.., a_, b+, b_, a, b} (pre)cocommutator:
S(J3) =asJsAJs+a_JsAJ_+biJi AT+b_J_ A1
8(J)=aJsAJi— b JsANT+a_Ju AJ_+bJs AT
S(J)=alsnJ- —3bsJs AT —ardi AJ-—bJ_ A1
8(I) =0.

Afterwards, Jacobi identities have to be imposed @ritogl (2)* ® gl(2)* — gl(2)* in

order to guarantee that a Lie bracket is defined through this map. Thus we obtain the following

set of equations:
a+b —ba=0 atb_+a_b, =0 a_b+b_a=0. (2.7)

The next step is to find out the Lie bialgebras defined by (2.6) and (2.7) that come from
classical-matrices. Let us consider an arbitrary skewsymmetric elemegit(@f A g/ (2):

(2.6)

r=ciJanJitrcodaANJ_+c3JaANT tcegJi AN +esJ AT +cede AJ_. (2.8)
The corresponding Schouten bracket reads
[[r, ] = (c6® — bcrca) Iz A Jx A J_ + (cace — 2c1c3)Ja A Jx A T

+(2c3co + cecs) I3 A J_ AT+ 2(cocq +cre5)Je ANJ_ AT (2.9)
and the modified classical YBE will be satisfied, provided

cace — 2c1c3 =0 2c3¢c0 +cee5 =0 cocq + c105 = 0. (2.10)

These equations map exactly onto the conditions (2.7) (obtained from the Jacobi identities)
under the following identification of the parameters:
a. =2c a_ = —2c by =2c
+ 1 2 + 4 (2.11)
b_ = —2C5 a = —Cg b= —263.

Therefore all Lie bialgebras associated with(2) are coboundaries and the most general
r-matrix (2.8) can be written in terms of tlkeandb parameters:

r=3aJsAnJi—a_J3 NI —bIs AT +biJi AT —b_J_ AT —2aJ. AJ2). (2.12)
Under these conditions, the Schouten bracket reduces to
[[r,r]] = (6(25 —Ac1cp) 3N T AJ- = (@® +ava )Tz A Je A J- (2.13)

so that it allows us to distinguish between standarti« a.a_ # 0) and non-standard
(a® + asa_ = 0) Lie bialgebras.
On the other hand, the only element g/(2) ® gl(2) that isAd®?-invariant is given by

N=1(Js® JB+2] @ +2J/, @ J)+12] @ I (2.14)

wherer; andz; are arbitrary parameters. Since= r +n will generate the same bialgebra as
r, the element; will relate non-skewsymmetric-matrices to skewsymmetric ones.
Let us now solve equations (2.7) explicitly; we find three disjoint families:

e Family I,:
Standardi{a+ # 0, a_, by, b_ = —a_b./a+, a, b = bia/a.} anda?® + ara_ # 0.
Non-standard{a. # 0, a_ = —a®/as, by, b_ = bia?/a?, a, b = bra/a.}.

e Family I_:

Standard{a. =0, a_ #0, b, =0, b_, a#0, b=—b_a/a_}.
Non-standard{a: =0, a_ #0, b+ =0, b_, a =0, b =0}.
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e Family I1:
Standard{a. =0, a_ =0, b, =0, b_ =0, a #0, b}.
Non-standard{a. =0, a_ =0, bs+, b_, a =0, b}.

This classification can be simplified by taking into account the following automorphism
of gl(2):

Jo—> J_ J_— I J3—> —J3 I—1 (2.15)

which leaves the Lie brackets (2.3) invariant. This map can be implemented at a Lie bialgebra
level onto (2.6), and it implies a transformation of the deformation parameters of the form

as —> a_ a_ — a+ by — —b_
(2.16)

b_ — —bs a— —a b — —b.

The Jacobi identities (2.7) and the classieaimatrix (2.12) are invariant under the
automorphism defined by (2.15) and (2.16). Therefore, the familislincluded within
I. provideda_ = 0. Hence we shall consider only the two familiesahd 1l, whose explicit
cocommutators andmatrices are written in table 1. Note that the central genefaabways
has a vanishing cocommutator.

Table 1. Explicit cocommutators anetmatrices ofg/(2) Lie bialgebras.

Family I+

Standarda+ # 0, a_, b+, a anda® + ara_ #0)  Non-standardas # 0, b+, a)

1 bia 1 a? bra
r —|asJzaANJs —a_JzsnJ_ — —J3AI —\a+JznJ++ —3ANJ-— —Jz3A]
2 as+ 2 as+ as
_b bsa?
+b+J+AI+a+J/\I—2LIJ+/\]> by AT — ”; J/\I—2¢1J+AJ>
a+ ax
a— 02 a2
8(J3)  —(asJrra_JYANJ3+bi|Jo — —J_| AT —ar|Je — =T | AT+ be| T+ =T | AT
a+ af ag
b+ a_ a bia a
8(J+) (alz—a_J)NJ++—|als+ —J3| A1 alJ3+ —J_ ) ANJs+—Je — — T3 A1
a+ 2 a+ as+ 2a+
b 2 b 2
5 (afa—ardAd- — 2+ L At @l —ard)Ad- — 2+ 2y A1
2 a+ 2 a+
8(I) 0 0
Family Il
Standarda # 0, b) Non-standardb., b_, b)
r —3bJs AT —als A J- —3(bJs—biJs+b_J_ ) AT
8§(Jy) O (baJe+b_J)NIT
8(Js)  —ats AJ3+bJi Al —(3b_J3—bI) AT
S(J_) —alJ_AJz—bI_ A1 ~(3bsds+bI ) AT

(1) 0 0




Multiparametric quantum gl(2) 2373

2.1. GL(2) Poisson—Lie groups

It is well known [27] that when a Lie bialgebrg, ) is a coboundary one with classioal
matrixr =}, ;' X; ® X, the Poisson-Lie bivectak linked to it is given by the so-called
Sklyanin bracket

A= rixtexi-xfexh (2.17)
ij
whereXx* ande are left- and right-invariant vector fields on the Lie graiip= Lie(g). We
have just found that a}§/(2) Lie bialgebras are coboundary ones; therefore, we can deduce

their corresponding Poisson—Lie groups by means of the Sklyanin bracket (2.17) as follows.
The 2x 2 fundamental representatidnof the g/ (2) algebra (2.3) is

U (1 0) ) (1 o>
3 = =
0 -1 01 (2.18)

01 00
D(J+)=<O 0) D(J):(l 0).

By using this representation, a group elementa@f(2) can be written as

00 0030,

T = 89_D(J_)e@D(1)693D(13)eG+D(J+) —
€0+036, e(9+93979+ + 69_63

) . (2.19)

Now, the left- and right-invariant L (2) vector fields can be obtained:

XL = 85, — 20,0y, Xt =9

BT ' , , (2.20)
XJ+ = 0y, XJ, = 9+393 — 0570y, +e~ 93397
XR =8, —20_9, XR =3,

B ! (2.21)

XR =0_05, — 0205 +e 220y, XR =9,

By substituting (2.20), (2.21) and the classieahatrix (2.12) in the Sklyanin bracket (2.17)
we obtain the following Poisson—Lie brackets between the (local) coordiftates., 0, 63}

{0+, 03} = —aby + a_02 — Ja.(1— e~2%)
{0-,03) = —ab_ + 3a.02 — Ja_(1— e~ 2%)
{9+, 9_} = (a_0+ — a+9_)€_293

{0+, 0} = b0y +1b_02 + b, (1 — e=2%)
(0,0} = —bO_ +1b,6% + 2b_(1— e %)

{03,0} = —3(b+0_ +b_0s).

(2.22)

By imposing Jacobi identities onto (2.22), conditions (2.7) restricting the space of Lie
bialgebras are recovered. On the other hand, from (2.22) and (2.7) the Poisson—-Lie groups
associated with the families @fl(2) Lie bialgebras written in table 1 can immediately be
obtained explicitly.

We recall that a classification of Poisson—Lie structures on the grdu@) was carried out
by Kupershmidt in [16], where quantum group structures;di(2) were also analysed. The
relationship between (2.22) and such a classification can be explored by writing the Tatrix

(2.19) as
T:<2 g), (2.23)
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Starting from the Poisson brackets (2.22), the quadratic Poisson brackets betwBed', D}
can be obtained:

{A,C} = (a +b)AC — (“*;b+) Cc?+ (%) (A2 + BC — AD)

7)o (M) o
+ (A%2+ BC — AD)

_b>B2

>C2 (a b )(D2+BC—AD) (2.24)

{A,D}:ZaBC—<a+;b+>C +< b+>AC—(a_;b_>BD

Q

{A, B} = (a—b)AB—(

{B,D}:(a+b)BD—( )(D2+BC AD)+<

{C,D} = (a —b)CD + (

2

+ _+
(B.C) = 2bBC — (“0 Y ep - (=8 ) ac + >\ 5D

2 2 2

(")
+ AB.
2

Therefore the Poisson structures given in [16] can be completely embedded within (2.24),
provided the following identification is imposed:

r=a+b s:—%(a++b+) v=>b—a (2.25)
u=>bs—as w=2a_=2b_.
Here, r,s,u,v and w are the parameters arising in Kupershmidt's classification and
{A, B, C, D} are the corresponding generators (note that we have used capital letters for the
latter in order to avoid confusion with thg(2) Lie bialgebra parameters). From (2.25) we
conclude that Lie bialgebras haviag # b_ have no counterpart in [16]. For the remaining
cases, (2.25) gives a straightforward correspondence between the quantum algebras that will
be obtained after quantization and the quant@hn2) groups described in [16].

3. Harmonic oscillator Lie bialgebras through contractions

The gl (2) algebra is isomorphic to the relativistic oscillator algebra introduced in [6] and its
natural non-relativistic limit is the harmonic oscillator algebia Both algebras are related
by means of a generalizeddnii—-Wigner contraction [28]. If we define

Ay =¢l, A_=c¢l_ N=1(Jz+1) M = €%] (3.1)
the limite — 0O of the Lie brackets obtained from (2.3) yields the oscillator algébra
[N, As] = Ay [N,A_]=—-A_ [A_, Al =M [M,-1=0 (3.2)

and the parameter can be interpreted as1/c, wherec is the speed of light.

In what follows we work out the contractions from the multiparamegig®) bialgebras
written in table 1 to multiparametdr, bialgebras. The Lie bialgebra contraction (LBC)
approach was introduced in [25] for a single deformation parameter. In order to perform
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an LBC we need two maps: the Lie algebra transformation (anikWigner contraction
as (3.1)), together with a mapping on the initial deformation parameter

a=c¢"da (3.3)

wheren is any real number and is the contracted deformation parameter. The convergence

of the classical-matrix and the cocommutatérunder the limits — 0 have to be analysed
separately, since starting from a coboundary bialgebra, the LBC can lead to another coboundary
bialgebra (bothr andé converge) or can produce a non-coboundary bialgebdavérges but

8 converges). In other words, we have to find out the minimal value of the numbech

thatr converges, the minimal value afsuch that converges, and finally to compare both of
them [25].

In what follows, we show that the LBC method can be applied to multiparameter Lie
bialgebras by considering a different map (3.3) for each deformation parameter. Let us describe
this procedure by contracting, for instance, the non-standard family 1l given in table 1.

First, we analyse the classioamatrix. We consider the following maps:

by = 2™ B, b =—-2c""B_ b=—¢" (3.4)

whereg., f_, ¥ are the contracted deformation parametersyand_, n are real numbers to
be determined by imposing the convergence whider the non-relativistic limit. We introduce
the Lie algebra contraction (3.1) and the maps (3.4) in the non-standard classia#ix of
family 11:

r=—30J3—biJi +b_J ) NI
=1 (e"0@2N — Me ) + 26" By Are L+ 28" B_A_e ) A Me?
= (" PON +e™ 3B A+ 3B_A) A M. (3.5)

Thus the minimal values of, n., n_ which allowr to converge under the limi — 0 are
given by

n=2 ny =3 n.=3 (3.6)
and the contracteg-matrix turns out to be
r=@ON+B:A++B_A)AM. (3.7)

Likewise we analyse the convergencesof
8(N) =3(8(Ja) +8(1)) = 3(beJs +b_J_ ) A

% (28”*ﬂ+A+s’1 — 28"*,B_A_s’l) A Me™2

= (" 3BsAr — " PB_A)AM (3.8)

8(Ay) = &8(Js) = —e(Gb_Js — b)) AT

e (" B-(2N — Me™2) — e"0 Are ™) A Me™?
= (2" T1BN — " AN A M (3.9)

$(AZ) = e8(J-) = —e(SbsJs+bI) A T
= —¢ (" B+(2N — Me™?) — "D A_e ") A Me™?

=— (26" BN — " POA) A M (3.10)



2376 A Ballesteros et al

and, obviously,s§(M) = 0. Hence the minimal values of, n., n_ which ensure the
convergence of under the limite — 0O read
n=2 ny =3 n_.=3 (3.11)
and the contracted cocommutator reduces to
S(N) = (B+Ar — B_A)YAM §(M)=0
§(Ay) = —BA A M S(A_) =0A_ A M.
Therefore, inthis case, the resulting contracted bialgebrais a coboundary one, as the contraction
exponents coming from (3.6) and (3.11) coincide.
The remainingg/(2) families of bialgebras can be contracted by following the LBC

approach, and all the resulting contracted bialgebras are coboundaries. The transformations
of the deformation parameters for the LBCs of the familiearid 1l read

(3.12)

|+ Standard a+ = E0+ a_ = _83/3_ b+ = —&0+ a = 827.9
I, Non-standard:  ay = sas by = —say a = 20

Il Standard: a=—¢g% b=—&%

Il Non-standard: by = 2638, b = —2:3p_ b=—c%9

If we apply these maps together with (3.1) to §i€2) Lie bialgebras displayed in table 1
and we take the limi¢ — 0, then the oscillator Lie bialgebras given in table 2 are derived. We
stress that the LBC procedure just described can be applied in a similar way to any arbitrary
multiparametric Lie bialgebra.

Table 2. Harmonic oscillator4 bialgebras via contraction frogi (2).

Family I,
Standarda. # 0, 9, f_ and®¥? — a+f_ # 0) Non-standardo+ # 0, ©)
r G NAA++OI(NAM—ArNAD) W NANA++O(NAM—ArNAD)
+B_A_AM +(92/a)A_ A M
8(N) asNAAs—B_A_AM N A Ar — (92 /as) A A M
8(A+) 0 0
8(AL) as(NAM— Ay ANAL)+20A_ A M ar(NAM— AL ANAL)+20A_ A M
8(M) 0 0
Family Il
Standard¢ # 0, 9) Non-standard, B+, 8—)
r ONAM+EAL AA (ON +BsAr +B_AYAM
S(N) 0 (B+A+ —B_A)AM
3(A+) —(+EALAM —A+ A M
8(AL) W —&EA_AM PA_AM
8(M) 0 0

We recall that all oscillator bialgebras are coboundary ones [29] and they were explicitly
obtained in [30]. In particular:

e Family I, corresponds to type.lof [30], except for the presence of the parameter
B+. However, this parameter is superfluous: if we define a new generatyf as
N + (B+/as)M we find that the commutation rules (3.2) are preserved@ndppears
explicitly in table 2.
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e The bialgebras of type_ |of [30] are completely equivalent to those of typebly means
of an automorphism similar to that defined by (2.15) and (2.16}f@?).

e The non-standard family 1l corresponds exactly to the non-standard type Il of [30] but the
standard subfamily does not, i.e. the paramegeimndS_ do not appear in the contracted
bialgebras. We can introduce them by means of another automorphism defined through:

’_ :3+ ﬂ—
N._N—ﬂ+$A+—ﬂ_éA_ D+E£O O —E+£0

8 8, (3.13)
A=A, ——M A =A_ — M M =M.

9 —£& O +E

These new generators satisfy the commutation rules (3.2) and now the standard family Il
can be identified within the classification of [30]. In particular, the harmonic oscillator
Lie bialgebra corresponding to [26] is recovered in the aase 0 andé = —z. As a
byproduct, we have shown that whént & # 0 andd — & # 0, both parameters., 8-

are irrelevant.

Therefore, there exist only two isolated oscillator Lie bialgebras that we do not find by
contractinggl(2): if ¢ = & it does not seem possible to introdyge and likewise, ify = —&
to recoverg.. In the rest of the cases, the non-relativistic counterpartsl () algebraic
structures can easily be obtained. In particular, Lie bialgebra contractions would give rise to
(multiparametric) quantumy, algebras when applied onto the quantghi?) deformations
that will be considered in the following section.

4. Multiparametric quantum gl(2) algebras

Now we proceed to obtain some relevant quantum Hopf algebras correspondingté2he
bialgebras. We shall write only the coproducts and the deformed commutation rules, as the
counit is always trivial and the antipode can easily be deduced by means of the Hopf algebra
axioms. We emphasize that coproducts are found by computing a certain ‘exponential’ of
the Lie bialgebra structure that characterizes the first order in the deformation. Deformed
Casimir operators, which are essential for the construction of integrable systems, are also
given explicitly.

4.1. Familyl. quantizations

4.1.1. Standard subfamily with. =0 andb.=0. If a_ andb. vanish, we have., # 0 and
a # 0. Performing the following change of basis:

L=Js— 2, (4.1)
a
the cocommutator adopts a simpler form
§(J5 =0 §(Jy) =aJyA Js §(Jo)=adznJ_ 35(I)=0 (4.2)

while the classicat-matrix is formally preserved as= %(a+J§ ANJe—2ale AN J2).
In this newgl(2) basis the commutators (2.3) and Casimir (2.4) turn out to be
2

a+ ay

[J5. J+] = 2J+ [3 /1= =2/ = —J3 = —Js

; (4.3)
(e, J )= Jg+—Jw  [1,-]=0.

;. a4+ 2
C=(s+20) +20d +20 ). (4.4)
a
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The coproduct of the corresponding quantum algéhra (¢/(2)) can easily be deduced
from (4.2) and reads
AP =10 3+/;®1 A() = B2 Q Iy + Jy @ e~4/2
AD)=1®1+I®1 A ) = e B2 QJ +J_ Qe /2,
We can return to the initial basis with instead of/3; however, in this case it does not seem

worthy sinceJz andJ, do not commute and this fact would complicate further computations
(note also thaty is primitive so that we know that (e¥/3) = ¢*/2 ® */: for any parameter

x).

The deformed commutation rules compatible with (4.5) are found to be

. H ) 2
[J/7 J+] — 2J+ [J/, ]7] — _2‘,7 _ a_ S|nh(a~]3/ ) _ &J.;. [I, ] — O
3 3
a a

(4.5)

(4.6)

[J+, J_] =

sinha J3 L et —1
a a

2a ) (e_ajé/z-h + J+eajé/2>

and the central element that deforms the Casimir (4.4) is

sinh(aJ3/2) L4 sinh(a]é/Z))
a/2 a/2

C= 2 (coshaJz) — 1) + s (
a

a tanha

2
a
+ a—;JE +2(JeJ_+ J_Js). 4.7

In order to check these results, the following relations are useful:

2

xJ} —xJi _ o, G+ oy . ay .
e e = J_e T + ;(e — 1)sinh(aJ}/2) — Lﬁ sinh 2 4.8)

s e = Joe*.
We remark that the (1) (central) generatar here does not couple with thg2, R) sector,
S0U4, q(81(2)) = Us, o (s1(2,R)) ® u(1).
It is also interesting to stress that the (to our knowledge, new) quantum algebra
U, .(sl(2,R)) is just a superposition of the standard and non-standard deformations of
sl(2, R), since its classical-matrix is the sum of both the standard and the non-standard one
forsi(2, R). This fact can be clearly appreciated by deducing the associated quRrtuairix
in the fundamental representation. By following [31], we geta2 matrix representatio®
of (4.6) given by
) 1 —ai/a 0 costiza) 10
D(J3) = D(J;) = D) =
ap= (2 7Y by (O Y gy (29
0 (a2/4a?) ((2/a) sinN(3a) — cosh(3a)) )
(2/a) sinh(3a) 0
which, in turn, provides a 4 4 matrix representation of the coproduct (4.5). We consider now
an arbitrary 4x 4 matrix and impose it to fulfil both the quantum YBE and the property
RAX)R™ =0 0 A(X) (4.10)

for X € {D(J}), D(J+), D(J-), D(I)}, and wherex (A ® B) = B ® A. Finally we find the
solution

) ( (4.9)

1 h —qh h?
0 1—¢% qh
R = q T 4 (4.11)
0 0 q —h
00 O 1



Multiparametric quantum gl(2) 2379

where

g = h:“-*(‘" _1). (4.12)
2 a

The expression (4.11) clearly shows the intertwining between the standard and non-
standard properties within the quantum algebia,(g/(2)). This results inR being a
quasitriangular solution of the quantum YBE and not a triangular one, $ngR,; # 1.
In the fundamental representation (4.9), the standard quaRtumatrix of s/(2, R) would be
obtained in the limita, — 0, and the non-standard or Jordanian one [13, 14] would be a
consequence of taking — 0. However, we stress that the latter is not a well-defined limit
at the Hopf algebra level (see [32] for a detailed study of this kind of problem). Moreover,
U, .(gl(2)) is just the quantum algebra underlying the construction of non-standard quantum
R-matrices out of standard ones proposed in [33, 34] and its dual Hopf algebra would give
rise to the quantum grou@L, ,(2) introduced in [16]. We finally recall that the classification
of 4 x 4 constant solutions of the quantum YBE can be found in [35].

4.1.2. Non-standard subfamily with=0. We now restrict ourselves to the case with- 0

so thatJ, is a primitive generator. The coproduct can easily be deduced by applying the
Lyakhovsky—Mudrov method [36] in the same way as in the oscillatocase [30]. The
cocommutators for the two non-primitive generators can be written in matrix form as

J; —a+J+ 0 A A
5( 3):(1“ )/\( 3) (4.13)
J_ §b+1 —a+J+ J_

b+

a+

where

Jg = Js — ar #0. (4.14)

Hence their coproduct is given by

2()=Gas ool (o ) (20) e

wheres (X ® Y) := Y ® X. The exponential of the Lie bialgebra matrix coming from (4.13)

is the essential object in the obtention of the deformed coproduct, whose coassociativity is
ensured by construction [36]. In terms of the original basis the coproduct, commutation rules
and Casimir of the quantugi (2) algebralU., », (g/(2)), are given by

AU =1 L+, ®1 AD=101+I®1

arJr __ 1
AR =1® 3+ 3@ ™" — b ® (e—)
+

a (4.16)
arJ. b+ b+ asJ.
AU =1RJ +J @ — = (- 21) ® I
2 a.
avds _ 1 b 2
[Ja, Ji] =25 —= [Ja, ] = —2J_ + %* <J3 - —*1)
i o =+ (4.17)
[J+,Jf]:J3+b+Ie—_ [17]20
a+
b b b
C= <13 - —*1) P <J3 — —+1> +2 2 151
a+ a+ a+
1_ —a+J+ 1_ —a+J+
T S R ) AR TR (4.18)

a+ a+
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It is interesting to note thaU,, ,,(gl(2)) reproduces the two-parameter Jordanian
deformation ofg/(2) obtained in [24] once we relabel the deformation parametets as2h
andb, = —2s. We also remark that this quantum deformation was constructed in [22] by using
a duality procedure from the quantum groGg., ,(2) introduced in [15]; it can be checked

that the generatorisA, B, H, Y} and deformation parametegsi defined by
A=1 B=J,

by .
H = exp{—asJ+/2}J5 + 2221 sinha+ J+/2)

a

12 . (4.19)
Y = exp{—a+J+/2}J_ — 4a+ explas J+/2} 1% + §+ sinh(a. J./2)

+

g=—a./2 h=—by/2
giverise tothe quantugi (2) algebraworked outin[22]. Onthe other hand, we also recoverthe
quantum extended (2, R) algebra introduced in [23] if we consider the basi§, J., J_, I}
and setz, = 2z andb, = —2z. The corresponding univers&-matrix can be also found
in [23, 24].

In the basis adopted here, a coupling of the central genevawwith the s/(2, R)
sector arises; however, if we skt = 0 this coupling disappears and we can rewrite
U, (gl(2) = U, (sl(2,R)) & u(l) whereU,, (sl(2, R)) is the non-standard or Jordanian
deformation ofs/(2, R) [13, 14, 37-40].

4.2. Family Il quantizations

4.2.1. Standard subfamily and twist¥X Z models. The coproduct and commutators of the
two-parametric quantum algebts ,(g/(2)) are given by

AD)=1I1+I®1 A =1® J3+13®1

A(Jy) = @ tD2 g g+ ], @ e~ (@s=bD/2 (4.20)
A(J_) — e(aJ3+bI)/2 ® J_ + J_ ®e—(aJ3+h1)/2
sinha J:
[Ja, Jil =200 [JaJ]=—20  [JeJ]= B [1,-]=0. (4.21)
The deformed Casimir is
sinfaJs/2)\? _sinh
C = cosha <%) +2 P ? (Jed_+J_J4). (4.22)

This quantum algebra, together with its corresponding universal quaRtomatrix, was
obtained in [18] and [20], and it can be related to the so-callgd(2) introduced in [17] (see
also [19]) by defining a set of new generators in the form

S A A exp{il}h
2 sinha 2a

A S S exp{—il}J_
2a sinha 2a

and the parametetsands as
5 b
= ¢ = — z =eX —1I;. 4.24
qg=ce n=-—a s D{Za } (4.24)

The algebral, ;,(g/(2)) is just the quantum algebra underlying thi&X Z Heisenberg
Hamiltonian with twisted boundary conditions [1]. This deformation can be thought as

(4.23)
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a Reshetikhin twist of the usual standard deformation. This superposition of the standard
quantization and a twist is easily reflected at the Lie bialgebra level by the associated classical
r-matrix r = —%b.]g, AT —als A J_ (see table 1): within it, the second term generates
the standard deformation and the exponential of the first one gives us the Reshetikhin twist.
Compatibility between both quantizations is ensured by the factrtifialfils the modified
classical YBE, and the method used here shows that the full simultaneous quantization of the
two-parameter Lie bialgebra is possible.

On the other hand, if we sét= 0 we find that/ does not couple with the deformation
of thesl(2, R) sector, and/, (gl(2)) = U,(sl(2, R)) & u(1) whereU,(sl(2, R)) is the well
known standard deformation ef(2, R) [10, 41].

4.2.2. Non-standard subfamily and twist&& X models. This bialgebra has one primitive
generatol ; the cocommutator for the remaining generators can be written as

J3 0 —bs —b_I J3
S| |=|3-1 —b1 0 |A| WL (4.25)
J- sbol 0 bl J-
so that their coproduct is given by
J3 1® Js 0 bl b_I J3
A J+) =|10J |+o|exp{| —20-1 b1 O ® (J+ . (4.26)
J- 1®J- —3bid 0 —bI J-

If we denote the exponential of the Lie bialgebra matrixiythe coproduct can be expressed
in terms of theE;; entries as follows:

AD=101+1®1

A =1Q® J3+3® Enn(l) +J+ @ Ero(I) + J_- ® E13(])
AJe) =1Q Ji + J+ @ Exo(I) + J3® Eo1(1) +J_ ® E23(1)
AJ-)=1Q®J-+J_Q Ess(l) +J3Q® Ezi(I) + J+ ® Eza(I).

(4.27)

The explicit form of the functiond;; is quite complicated, which in turn makes it difficult
to find the associated deformed commutation relations. Therefore in what follows we study a
specific case by setting. = 0. The coproduct of the quantum algeldfa ,(g/(2)) is

AD=1®I1+I®1 AUJD) =1Q Ji+J. ® e

el —1
A(J3)=1®]3+]3®1+b+.]+®< A ) (4.28)

—bI
_ bl e -1 2 1—coshbl
A(JD)=1Q®J_+J_Qe +b+J3®< b >+b+J+®<T

and the associated commutation rules are the non-deformed ones (2.3). Thé ieksskntial
in this deformation, and no uncoupled structure can be recovered unless all deformation
parameters vanish. On the other hand, the element

R = expir} = expll @ (bJs — bsds)/2} expl—(bJs — bids) @ 1/2) (4.29)

is a solution of the quantum YBE (dds a central generator) and it also fulfils relation (4.10).
The proof of this property is sketched inthe appendix. Inthe fundamental representation (2.18),
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the R-matrix (4.29) reads

1 —ebp p —ebp?
0 e ? 0 e’p by (e —1

R = = — ) 4.30
0 0 ¢ —p P=7 < b ) (4.30)

0 0 0 1

From the point of view of spin systems, a direct connection can be established between
the one-parameter deformation with= »_ = 0 and the twiste& X X chain. This particular
guantization can be obtained as the limit> 0 of the (standard) quantum algeldfg, (g/(2)),
anda is known to be related to the anisotropy of tki&' Z model. Under such a limit, twisted
boundary conditions coming from+£ 0 are preserved, and a twist®X X model is expected
toarise. This symmetry property can be checked explicitly by following the approach presented
in [42] (and used there in order to obtain deformed models). We consider the fundamental
representatio® of U, (gl(2)) (2.18) interms of Pauli spin matrice®.(J3) = o3, D(J+) = 0+,

D(J_) = o_ and D(I) is again the two-dimensional identity matrix. If we compute (with
b+ = 0) the deformed coproduct (4.28) of the Casimir (2.4), we obtain

(D® D)(A,(C) =6+2(03®03+2¢0_®0s+2e%0, ®0.). (4.31)

This means that the twisted X X Heisenberg Hamiltonian can be written (up to global
constants) as the sum of elementary two-site Hamiltonians given by the coproducts (4.31):

N
Hy, =Y (D; ® Disy)(A;™(0))
i=1

N
=6N+2 Z(aéoéﬂ +2e¢ b oloit + 26l 0l (4.32)

i=1
This expression explicitly reflects thé,(g/(2)) quantum algebra invariance of this model
since, by construction, the Hamiltonian (4.32) commutes with(f¥ie+ 1)th coproduct of
the generators ot/,(gl(2)). In the same way, further contributions could be obtained by
considering other quantum deformations belonging to this family. In particular, if we take the
two-parametric coproduct (4.28) and repeat the same construction we are led to the following
spin Hamiltonian:

N
Hypop = Y (D; ® Diun)(ALH(C))
i=1

N
=6N+2 E (0503”1 +2e¢loloit™t+ Zebofra’_ﬂ)
i=1

N b b
e’ —1 oo e’ -1 .
+2b, E {( 7 ) oloftt+ ( - ) oéoffl}

i=1

N
1— coshb o
+2b2 )" <T> oloi*t, (4.33)
i=1

Therefore, we have obtained a (quadratid.iphdeformation of the twisted X X chain, which
is invariant undeU,, ,(g/(2)) and whose associated quant@¥matrix is (4.30). Likewise,
the introduction of the full quantization containithg provides a further deformation of the
Hamiltonian (4.33).
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5. Concluding remarks

We have presented a constructive overview of multiparameter quagit(@ndeformations

based on the classification and further quantizatiog/¢®) Lie bialgebra structures. The
quantization procedure (based on the construction of the ‘exponential’ to first order in the
deformation) turns outto be extremely efficient for constructing multiparametric quait@m
algebras explicitly. By following this method, a family of new multiparametric quantizations
generalizing the symmetries of twistédX X models is introduced, and the quantum algebra
counterpart of the superposition of standard and non-standard deform@tigng2) [16] is
obtained. Throughout the paper, Lie bialgebra analysis is shown to provide essential algebraic
information characterizing the quantum algebras and their associated models. For instance, a
Lie bialgebra contraction method gives a straightforward method for implementing the non-
relativistic limit of the quantuny/(2) algebras, different coupling possibilities between the
central generator and thé&(2, R) substructure are easily extracted from the cocommusator

and Reshetikhin twists giving rise to twistéflX Z models can be identified (and explicitly
constructed) with the help of the classieahatrices generating the Lie bialgebras. In general,

we can conclude that the existence of a central generator strongly increases the number of
different quantizations, even when this central extension is cohomologically trivial at the
non-deformed level (compare the classification here presented with the one corresponding to
sl(2, R)), and the explicit construction of these quantizations provide an algebraic background
for systematically obtaining new integrable systems.
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Appendix

We prove here that the element (4.29) satisfies (4.10) for the generatovVe write the
universalR-matrix askR = exp{l ® A} exp{—A ® I} whereA = %(b]g — b+ J+) and we take
into account the formula

21
e AX) e = AX)+) = LA A0 ] (A.1)
n=1 n:
We setf = —A ® I and we consider the coproduct £f (4.28); thus we obtain

[f,...[f, AU .. ] = (J + 12?—;913) ® (bI) e

2

b .
+ 2_b+2J+ ® (bI)" sinhbl forn odd andz > 1

) (A.2)
[f,...[f, AU .. ] = (J + j]3) ® (bI)'e™!

2

b
- 2_b+2J+ ® (bI)" coshbl for n even andh > 2.
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Therefore
b X (bI)"
f - bl —bl Wi
AU =AU F U Ty B ; "
b2 . X (b)ZH p? X (b
+—J sinhb I —_—— —J coshbl _—
2p2 S ;(2“1)! 2p2 " k; 2!

2
+

=A(J)+ (J_ + %Jg) ®@L—ety+ b J+ ® (coshbl — 1)

2h2
=1®J_+J_Q®1l=A(Jo). (A.3)
Now we takef = I ® A and we find that

[f. ... [f, Ao(UD]Y .. ] = —-(bD)" ® (J_ + %Jg) for n odd andh > 1

2
[f,...[f, AUV .. 1= (D" ® (J_ + ﬁ]3 b J+) forn even and: > 2.

2% 2p?
(A.4)
Finally, the proof follows from
. b
e/ Ao(J)e ! =1®@ J_+J_®1—sinhbl @ (J_ + ﬁh)
+(coshbl — 1) @ [ J_ + b+ | bi J A() (A.5)
— _ - —_ = = 0 O —_). .
2v°° " 227"

Likewise, it can be checked that (4.10) is fulfilled for the remaining generators.
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